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NATURAL CONVECTION IN POROUS MEDIA 
BOUNDED BY CONCENTRIC SPHERES AND 

HORIZONTAL CYLINDERS 
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(Rrceiaed 28 June 1978 and in revised,firm 27 Noremher 1978) 

Abstract--The present paper reports the results of an analytical investigation of natural convection in 
porous media completely enclosed by concentric spheres and horizontal cylinders. The steady, two- 
dimensional problem has been solved by the method of finite differences and the method of regular 
perturbations. The variations of the overall heat transfer with the modified Rayleigh number, the non- 
dimensional external heat-transfer coefficient, and the radius ratio have been assessed. Results indicate 
that a maximum value of the heat transfer occurs for the spherical and cylindrical geometries dependent 
solely upon the radius ratio for each geometry. The flow field has been examined and compared for the 
two geometries. An interesting feature is manifested by the occurrence of a relatively stagnant and stable 
cold region at the bottom of the enclosure if the inner bounding surface is considered to be heated, thus 
shifting the center of the gross circulation from the horizontal. Additionally, a possible qualitative 
analogy between the nature of the free convection when the enclosure is filled with a porous medium and 
when the enclosure is filled solely with a Newtonian fluid is scrutinized. Finally, some algebraic 

correlations of the data are set forth for the convenience of practical applications. 

NOMENCLATURE 

Bi, Biot number, k(AR)/k; 

c 

LG, 
specific heat of the fluid [J/kg K] ; 
Darcy number, K/(AR)‘; 
position vector; 

F(q),g(q), function in the perturbation analysis 

indicative of the dependence of the heat 

transfer upon the radius ratio, cylindrical 

geometry and spherical geometry, 

respectively ; 

km 

M,N, 

NK 
PY 

R j, 
6 

1I;R, 

Ra, 

Ra*, 

Ra, 

acceleration of gravity [m/s’] ; 
heat-transfer coefficient [W/m’ K] ; 
permeability [m’] ; 
thermal conductivity of the stagnant 

porous medium [W/m K] ; 
effective thermal conductivity including the 

effects of convection and radiation 

[W/m K] ; 
number of grid spaces in the radial and 

azimuthal directions, respectively; 
Nusselt number defined by equation (10); 
pressure [N/m’] ; 
radial coordinate at a boundary [m] ; 
non-dimensional radial position ; 
radial coordinate [m] ; 
radial distance between inner and outer 
boundaries [m] ; 
modified Rayleigh number, 

&‘(AT)K(AR)Il,r; 
modified Rayleigh number, perturbation 
solution, sjI(AT)KR&cc; 

Rayleigh number, sjI(AT)K(AR)3/~~,; 
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$ Professor of Mechanical Engineering, University of 
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T, temperature [K] ; 
AT, temperature difference between the internal 

boundary and the external environment, 7;: 

-T, [K-j; 

;, 
radial velocity [m/s] ; 
vectorial velocity, tie, + Ue, + We, [m/s] ; 

6, azimuthal velocity [m/s] ; 
I? 

k 
polar or longitudinal velocity [m/s] ; 
denotes position of the maximum negative 

value of the stream function. 

Greek symbols 

thermal diffusivity of the stagnant porous 

medium, k/pc, [m’/s] ; 
thermal diffusivity, k,/pc, [m’/s] ; 
coefficient of cubical expansion (l/K); 

radius ratio, R,/R,; 

non-dimensional temperature, (T- T,)/(T 

-To); 

absolute viscosity [N s/m*] ; 
kinematic viscosity [m*/s] ; 
density of the fluid [kg/m31 ; 
azimuthal angle; 
non-dimensional stream function defined 

by equation (8). 

Subscripts 

1, pertaining to the inside boundary or a 
defining quantity; 

I> general subscriptive variable ; 
0, pertaining to the external environment or 

the outside boundary, or pertaining to the 
Newtonian fluid ; 

r, pertaining to the radial direction; 

s, pertaining to the interior porous medium; 

4, pertain&g to the azimuthal direction ; 
xc, pertaining to the exterior environment. 
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INTRODUCTION 

BECAUSE of their minimum surface area-to-volume 

ratio, spherical storage tanks will be established due 

to increasing energy conservation measures. The 

question as to the nature of the most effective 

procedure of insulating these facilities from heat loss 
naturally arises. Many of the existing available 
“superinsulations” necessitate considerable expense 

in capital investment, and the maintenance of 
moderately high vacuums to reduce heat loss [I] 

incurs additional expense. Simple thermos-bottle 

type systems are one alternative, but relatively large 

structural supports with an associated reduction in 
overall insulating capacity are usually necessary to 

provide the requisite strength in massive systems. 

Other practical problems also exist in the use of such 
systems. 

A variety of such superinsulations have been 

analyzed, yet little attention has been afforded to the 

insulating characteristics of porous materials in non- 

rectangular geometries. A fundamental investigation 
of the thermal performance of such insulations 

would produce results aiding the practicing engineer 
in attaining a judicious design decision. 

A porous material is introduced into an enclosure 
to decrease the convective and radiative transfer of 

heat. Although radiation may significantly contri- 
bute to the total heat transfer at elevated tempera- 

tures, around room temperature the effect is small 

[Z-4] and is lumped into the experimentally de- 

termined thermal conductivity. Thus, the transport 
of heat by radiation and convective motion is 

reduced at the expense of an increased amount of 

heat transfer by conduction. The correspondingly 

complicated flow system is described in a macro- 

scopic sense by Darcy’s law [5-71. 

Many published works have dealt with free 
convection in porous media heated from below. An 

excellent current review was presented by Bankvall 
[8]. The conjugate problem of heating from the side 

has yet to be as thoroughly examined. Experimental 
[8 131 and theoretical [8, 9, 1 I, 12, 14, 151 results 
are available for a variety of rectangular con- 
figurations and insulation materials. Existing studies 

concerning the cylindrical geometry are few in 
number, while studies concerning the spherical 

geometry are non-existent. 
Caltagirone has presented an extensive treatment 

of free convection in a porous medium ensconced 
between horizontal concentric cylinders [16]. The 
evolution of various flow patterns was established as 
the temperature difference was increased. Two- 
dimensional, steady solutions were obtained numeri- 
cally and utilizing a perturbation technique. Experi- 
mental verification was sought, and unsteady and 
three-dimensional patterns were observed. Critical 
Rayleigh numbers were established from a solution 
employing the Galerkin technique, and some un- 
steady, three-dimensional Rows were generated 
numerically utilizing the method of finite elements. 
Although specific heat-transfer data were presented, 

the subject was not treated in general as the author’s 
main emphasis was upon the nature of the fluid flow. 
Two-dimensional results for the average and local 

heat-transfer rates have also been presented by 
Brailovskaya et al. [ 171. 

ANALYTICAL FORMULATION 

The porous medium is assumed to be an effective 

continuum. This is generally valid for systems where 
the non-dimensional pore space, the square of which 

is qualitatively represented by the Darcy number, 

K/(AR)*, is much less than one. Darcy’s law then 

adequately describes the transfer of momentum 
provided the Reynolds number based upon pore 
diameter is less than one [6, 7, 181 so that inertial 
effects are yet negligible. The Boussinesq approxi- 

mation of constant properties except in the body 
force term is utilized, limiting the overall temperature 

difference. The continuity equation and the equa- 

tions governing the transfer of momentum and 
energy in the steady state are, in dimensional form, 

as follows [7] : 

v.v =o (1) 

0 = ~[vj-pg] (2) 

0. VT = uV’T. (3) 

The physical system is shown in Fig. 1. The 

azimuthal angle is measured counterclockwise from 
the vertically down position. The gravity vector is 

represented by : 

g = g[cos 4e, - sin 4e, ,]. (4) 

The inner sphere or cylinder is of radius Ri and the 
outer of radius R,. The most representative distance 
with which to non-dimensionalize the physical 

variables is taken as the gap thickness, AR = R, - Ri. 

FIG. 1. The physical system 
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The annular space between the concentric spheres or It is noted in passing the L’Hopital’s rule must be 

cylinders is filled with a porous medium of per- utilized in evaluating u for the spherical system at 4 

meability K, and stagnant thermal conductivity k,. = 0 and n because the sine is zero at these locations. 

The variables ?, $J, U, j and T are non- 
dimensionalized as follows: 

The inner boundary is considered isothermal as 
would exist in storage tanks or pipes with walls of 
small thermal resistance compared to the insulation. 
The outer boundary is allowed to transfer heat with 
the surroundings at temperature, To, by virtue of a 
constant heat-transfer coefficient, 11. If the heat- 
transfer coefficient becomes infinitely large, the outer 
boundary would become isothermal at temperature, 
To. The mathematical expressions for these boundary 
conditions are: 

ti(AR) jX T-T, 

‘yG’E 
(5) 

to yield the unbarred quantities, Y, 4, u, p and 9, 
respectively. 

The curl of equation (2) is taken to eliminate the 
pressure, and a non-dimensional stream function is 
defined to satisfy the continuity equation. The 
resulting system of non-dimensional equations 
panded for the spherical geometry are as follows: 

1 ati -1 a$ 
us-----_ 

r2sin& a4 
VE--. 

rsin4 & 

The non-dimensional parameter appearing in 

ex- 

(6) 

(7) 

(8) 

the 
coupling source term of equation (6) is the modified 
Rayleigh number, herein called the Rayleigh number 
for brevity. Explicitly : 

Ra = gB(ATWW) 
(9) 

VU 

For ordinary porous insulation systems, the modi- 
fied Rayleigh number is limited to less than about 
100. Qualitatively, the modified Rayleigh number is 
the ratio of a buoyant force to the drag force of the 
medium, and increases as the imposed temperature 
difference is increased and the porosity or per- 
meability is increased. 

The total amount of heat necessary to maintain 
the steady state is characterized by the average 
Nusselt number, explicitly: 

where A is the area through which the heat is 
transferred and the subscript “cond” indicates that 
conduction is the only mode of heat transfer. With a 
lower bound of one, the average Nusselt number is 
the ratio of the total heat transfer to the heat transfer 
as if it occurred by conduction alone, or the ratio of 
the effective thermal conductivity to the thermal 
conductivity of the stagnant medium. 

All boundaries are considered to be impermeable 
so that no normal velocity is allowed. Therefore: 

tiIri9 ro; 4) = 0 

$(r; 0, X) = 0. 

(11) 

(12) 

a8 
jy (I; 0, ii) = 0 (13) 

e (ri, 41 = 1 (14) 

(15) 

where: 

(16) 
k 

The problem may be parametrically stated as 
follows: 

Nu = Nu(Ra, r/, Bi) (17) 

where the second parameter, q = RJR,, has been 
defined for convenience in the presentation of the 
results. In general, the average Nusselt number, 
hereafter called the Nusselt number, falls in the range 
of one to ten, and increases with increasing values of 
Ra and increasing values of Bi. The dependence on q, 
however, is somewhat complicated. 

METHODS OF SOLUTION 

The systems of equations and appropriate boun- 
dary conditions were solved using a regular per- 
turbation approach which will be discussed sub- 
sequently and a finite-difference successive over- 
relaxation approach. The computation was accom- 
plished by a CDC 7600 computer employing central- 
difference representations [19] of the governing 
equations and boundary conditions. 

The calculation scheme proceeded as follows: (1) 
the stream function, $, and the temperature, 0, were 
initialized to their conduction values, i.e. variations 
with 4 were neglected ; (2) new stream function and 
temperature values were calculated from the central- 
difference forms of the governing equations; (3) new 
boundary temperature values were computed on the 
outer boundary, if necessary; (4) steps 2 and 3 were 
repeated until convergence was achieved; and (5) 
velocities and Nusselt numbers were computed from 
the converged fields. 

The solutions were assumed to be converged to 
“steady-state” when the following criterion was 
satisfied : 

Z”ew - hd 
< Res (18) 

bmv max 

where the subscript “max” denotes the maximum 
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value over all the grid points, and the symbol, 7, 
denotes any dependent variable, either the stream 
function or the temperature. The value of Res to 

achieve acceptable convergence was found to be 
5 x lo-“, as the value of the Nusselt number was 
found to change by less than I”,, when Res was 
decreased from 5 x 10m4 to 5 x lo-“. 

A uniform grid system was employed in solving 

this problem (i.e. Ar = l/M and A4 = n/N). The 
accuracy of the scheme was determined by decreas- 

ing the grid size and observing the change in the 
quantities of the Nusselt number and the negative 

maximum of the stream function. The grid size was 

decreased until less than a 2”,, change was observed 

in these quantities for Rtr = 50 and 11 = 12. 

NUMERICAL RESULTS AND DISCUSSION 

All calculations were performed for Rayleigh 

numbers of 10, 30, 50 and 75. The radius ratio was 
varied from 0.1 to 0.95 for isothermal boundaries 
and from 0.33 to 0.95 for a non-isothermal outer 

boundary. The Biot number was assigned values of 
m, 100, 50, 25, 12.5, 6.25 and 3.125. For air at room 

tem’perature and (AR) = 0.1 m, this corresponds to 
values of about cc, 25, 12.6, 3. 2 and 1 [W:‘m’ K] for 

the heat-transfer coefficient. 

Figure 2 presents the variation of the Nusselt 

number, Nu, and the quantity (-$),,,,, x (1 -q) 
indicative of the total mass circulating in the 

enclosure, with the radius ratio, q, for the spherical 
geometry. The influence of the free convective 

motion upon the Nusselt number is directly in- 
dicated by the value of the ordinate with the lower 

bound of one denoting pure conduction. 

2’4; 2.2 2.0 

30 I” \\ \ I 75 50 

0 

0 0 . . . _,4.0 -12.0 

Sphere 

8’ 

FIG. 2. The variation of the Nusselt number and the gross 
circulation with the radius ratio. 

It is of interest to note that the curves possess a 
maximum value near a radius of 0.3. The small 

absolute value of the curvature and the degree of 
accuracy of the results do not permit a conclusive 

observation of a shift in the value of the abscissa at 
the maximum point as the Rayleigh number in- 

creases. Convection does not contribute to the 
Nusselt number as ‘1 approaches 1 because the ratio 

of the path length of the convective motion to the 
path length for conduction approaches infinity. As 4 
is decreased from one, this ratio decreases resulting 

in an increased role of the free convective motion 

and a corresponding increase in the Nusselt number. 

0 

/ 

1 ” 

FIG. 3. The variation of the Nusselt number and the gross 
circulation with the radius ratio. 

An opposing effect is the decrease in the amount of 
heat liberated as q is decreased since the relative size 
of the inner sphere is decreased. The effects balance 
around q = 0.3, and the Nusselt number is observed 
to decrease to 1 as ‘1 is further decreased to zero. 

The variation of the Nusselt number and the 

negative maximum of the stream function (which is a 
measure of the gross circulation) with the radius 
ratio is shown in Fig. 3 for the cylindrical geometry. 
The physical situation is seen to be similar to the 
spherical geometry case. A maximum value of the 
Nusselt number occurs at 17 = 0.15. The maximum 
occurs “later” as q is decreased from I than occurs 
for the spherical geometry because the inner area 
decreases less rapidly for the cylindrical geometry. 
The results for the Nusselt number are compared 
with those of Caltagirone [16] where the values of 
the Rayleigh number are compatible. Agreement is 
fair except near tl = 0.15 where the velocities are high 
and the grid spacing approaches the size of the inner 
cylinder. 
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~a Sphere Cylinder 
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30 0 8 

50 0 0 

75 0 l 

q=l/? ----- 

0.1 0.2 0.3 / 
l/Bi 

FIG. 4. The variation of the Nusselt number with the 
inverse of the Biot number for radius ratios off atid f. 

li" 

1.3 

1.2 

I .O 
0 0.1 0.2 3.3 

l/Bi 

FIG. 5. The variation of the Nusselt number with the 
inverse of the Biot number for radius ratios of $ and 4. 

Figures 4-6 depict the variation of the Nusselt 
number with the inverse of the Biot number for both 
the spherical and cylindrical geometries for radius 
ratios of ‘1 = l/3, l/2 and 213, 415 and 9110, 
respectively. The abscissa represents the ratio of the 
thermal resistance of the external medium to the 
thermal resistance of the effective porous medium on 
a Cartesian basis. The relations of the actual 
resistance ratios to be abscissas must include area 
variations. 

The Nusselt number is seen to decrease as the 
inverse of the Biot number is increased. The outer 
boundary now assumes a local temperature between 
0 and 1 according to the balance of radial heat fluxes 
at the surface. This acts to effectively decrease the 
average Rayleigh number for the enclosure by 
reducing the average temperature difference between 
the inside and outside boundaries. Since the local 
temperature on the outer boundary is proportional 
to the strength of the local free convective motion 
within, the most significant reductions in the heat 
transfer will occur at the higher rates of heat transfer. 
The variation of the Nusselt number with the inverse 
of the Biot number is thus seen to possess a large 
negative curvature at l/Bi = 0, and the curvature 
increases with l/Bi as the convection is less pro- 
portionally reduced until the curves became very flat 
and all approach 1 as the inverse of the Biot number 
approaches infinity. For Ra = 10 in Fig. 6, the 
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1.08 

L 

r = ii/l0 

& Sphere Cylinder 

10 A 

30 0 n 

50 0 0 

75 0 l 

FIG. 6. The variation of the Nusselt number with the 
inverse of the Biot number for a radius ratio of 1%. 

unexpected behavior is due to the inaccuracy of the 

results. 

Streamlines and isotherms for 11 = l/2 and Ray- 

leigh numbers of 10 and 75 are shown in Figs. 7 and 

8, respectively, for the spherical geometry. Stream- 
lines are shown as solid lines, and isotherms are 

shown as dashed lines. An interesting aspect is the 
relatively stagnant portion in the lower region of the 
enclosure. Cold fluid flows into this region and 
assumes a relatively stable situation as there is little 
buoyancy force to impel the fluid to rise. The heat 

that would ordinarily flow radially by conduction is 
actually conducted very strongly azimuthally and 

subsequently carried away by the fluid as it turns 
upward near the lower portion of the inner boun- 
dary. Consequently, a relatively stagnant region 

exists in the lower portion of the sphere and a 
vigorous flow pattern exists in the upper portion of 
the sphere, especially near the line 4 = 7~. The center 

of the flow field, marked by an “X” on the drawings, 
shifts upward from the central location at 4 = n:2. 

With increasing Rayleigh number, the highly un- 
stable condition existing near the top of the sphere 

might eventually manifest itself by tending towards 
longitudinal rolls, resulting initially in a separate 

“ring” vortex near the top of the enclosure. This 

FIG. 7. Streamlines and isotherms for Ra = 10. FIG. 8. Streamlines and isotherms for Rtr = 75. 
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Ra = 75 

q = 0.5 

Bi = 3.125 

Nu = 1.54 

X (I -ii) = 2.18 

FIG. 9. Streamlines and isotherms for Bi = 3.125. 

‘/ = 0.0 

I-- /) = 0.6 

(-a)m,, 

Ra = 50 

il = 0.8 

Bi =- 

Nu = 1.18 

x (l- ll) = 5.44 

Sphere 

FIG. 10. Streamlines and isotherms for q = 0.8 

would be more probable for the higher radius ratios 
since they more closely resemble the Aat plate 
“heath-from-glow” geometry near 4 = x. The 
isotherms are seen to be distorted in accordance with 
the flow patterns. 

The effect of the value of the Biot number upon 
the flow and temperature fields may be assessed by 
viewing the isotherms and streamlines for a Biot 
number of 3.125 in Fig. 9. At this radius ratio, the 
effect of Biot numbers greater than 50 are negligible 
as the field values are everywhere close to the infinite 
Riot number case. The net effect is that the entire 
outer boundary experiences an increase in tempera- 
ture as evidenced by the horizontal spreading of the 
isotherms. The Row system is devitalized and the 
center of the flow decreases in angular position. 

The effects of increasing the radius ratio may be 
evaluated by viewing Fig. 10, depicting streamlines 
and isotherms for Ra = 50, Bi = CC and T = 0.8. 
Although more vigorous, the flow contributes Less 
significantly to the heat transport as the direction of 
flow occurs principally along lines of constant radial 
position. As before, the largest rates of heat transfer 
are seen to occur at the stagnation points existing at 
C$ = 0 and rc for the inner and outer boundaries, 
respectively, with a gradual variation of the heat flux 
in the central portion. 

For the cylindrical geometry at q = l/2, the flow is 
slower and more uniform. The velocities near the 
walls are not as high, and the streamlines appear to 
follow the azimuthal grid lines more closely. The 
general flow pattern appears to be similar although 
the streamlines for the cylindrical geometry do not 
exhibit as pronounced an upward shift as do the 
streamlines for the spherical geometry. This is a 
manifestation of the lower overall rate of heat 
transfer for the cylindrical geometry at q = l/2 as 
can be seen by comparing Figs. 2 and 3. The 
isotherms reflect this by appearing less distorted than 
for the spherical case. 

PERTURBATION SOLUTION 

In order to garner insight regarding the nature of 
the convection process concerning extrema and 
limits as the radius approaches zero, perturbation 
techniques were employed to solve equations (6) and 
(7). Only the results of the forms of the expressions 
for the spherical geometry will be reported herein, 
since the. results for the cylindrical geometry are 
already available [ 161. 

The stream function and the temperature are 
expanded in power series of the Rayleigh number as 
follows: 

Ifi = Ra*t+h,+Ra*2$2+Ra*3CI/,+... (20) 

e= e*+Ra~e~+Ru*2e~+... (21) 

where Ra* is the Rayleigh number dependent upon 
the outer radius, R,. These expressions, when 
substituted into equations (6) and (7) and the 
boundary conditions, serve to essentially de-couple 
the ~rturbat~on functions when the limit of the 
Rayleigh number approaching zero is sequentiaily 
applied. The solutions are given in terms of a new 
radial coordinate r’ = is/Ro. The primes are dropped 
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and the solutions are as follows: 

Bl,+BlsInr Bly &O f---__---_+_+ - 
r3 r’ rs (26) 

where the constants, Aj and B,, are functions of the 

radius ratio, v, alone. 
The first temperature modification does not 

contribute to the average heat flux due to the 

antisymmetric nature of the excess. This second 
correction to the temperature consists of a second 
harmonic proportion to cos 24 and a function of the 

new radial coordinate alone. Only the function 
dependent upon the new radial coordinate alone 

contributes to the average transfer of heat. The 

contribution to the average Nusselt number, defined 
by equation (IO), is as follows: 

NM = I +Ru2 

3B8+B,-4B,o-5B,,) +O(Ra”). (27) 1 
For convenience, the function in the brackets will be 
called g(q) as it is dependent upon the radius ratio 

alone. The Nusselt number may then be expressed to 
the order of Rtr2 as: 

Nu = I +Rc~‘g(r~)+O(R~~“). (28) 

The perturbation analysis was carried no further as 
the algebra was becoming quite laborious. It is noted 
that the Rayleigh number here, Rrr, is defined as 
before in equation (9). 

The dependence of the convection contribution to 
the Nusselt number may be determined by viewing 
Fig. 11 which depicts the variation of g(q) with ‘1. 
The small dashed line is a representation of the curve 
fit, given by the formula: 0.0313[~(1 -~l)]l.ye-“.hz”. 
In contrast to the linear dependence upon the 
Rayleigh number of the heat transfer for the 

rectangular geometry [20], a quadratic dependence 
is observed here. The maximum occurs at p/ = 0.3. 
Further terms in the perturbation solution may yield 
higher order corrections which do not possess a 

maximum at this point. 
The perturbation solution is seen to yield accept- 

able accuracy if the overall Nusselt number is below 
about &‘u = I.6 This yields the following range ol 
vjalidity: 

-I 
I 0 

FIG. 11. Perturbation functions f (11) ang g(q) 

Equation (28) is uniformly valid for all radius ratios 

below a Rayleigh number of about 35. As the radius 
ratio approaches zero and one the perturbation 
approximation grows progressively better with in- 
tinite radii of convergence for the Rayleigh number 
at the limiting radius ratios. The streamlines and 

isotherms calculated from equations (20) and (21) 
are in excellent agreement with the ones obtained 
from the numerical calculations for the above range 

of convergence and. consequently, will not bc 

presented here. 
A similar perturbation analysis for the cylindrical 

geometry yields: 

Nu = I +RaZf’(q)+O(Ra3). (30) 

The function f’(q), which contains the entire de- 
pendence of the Nusselt number on the radius ratio. 
is also shown in Fig. 1 I. The curve fit is represented 

by the large-dashed line: 

5.9 x 10W3[q(l -~)]3’4e~4.y2i’. 

A maximum is observed at a radius ratio of r) = 0.13. 
The results obtained from the perturbation analy- 

sis agree well with the results obtained from the 
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numerical calculations for Nusselt numbers below 
about Nu = 1.4, yielding the following range of 
validity: 

0.632 

l&g m. 

COMPARISON WITH RESULTS OF 
FLUID-FILLED ENCLOSURES 

The present results for the cyhndrical geometry 
will be qualitatively compared with the results 
obtained by Kuehn and Goldstein [21] for the 
condition of a Newtonian fluid existing in the 
annular space. When no porous matrix is present, 
the conduction regime, in which the effect of 
convection upon the temperature fieid is negligible, 

occurs when z -=z 100. Another flow regime is the 
boundary-layer regime occurring when the Rayleigh 

number is greater than about Ra = 3 x 104, and, for 
Rayleigh numbers between 100 and 3 x 104, a 
transition region exists. In the lower Rayleigh 
number region of the transition regime, the entire 
flow rotates about an elevated center. As the 
Rayleigh number is increased a constant vorticity 
core develops indicating “solid-body” rotation. A - 
temperature inversion becomes apparent near Rn 

= 104. As the Rayleigh number is increased still 
further into the boundary-layer region, a relatively 
stagnant core is observed with changes in the 
velocity and temperature occurring over a short 
distance, and the temperature inversions become 
severe. In this region, the Nusselt number is 

proportional to Ra -lj4. The variation of the Nusselt 
number with the radius ratio is observed to undergo 
a maximum value near tt = 0.3. The Prandtl number 
is seen to exert little effect throughout the 
investigation. 

Rayleigh numbers greater than about 10. Since no 
core region exists, AR is the pertinent length scale. 
The heat transfer by convection has been shown to 
be dependent upon the square of the modified 
Rayleigh number at small Rayleigh numbers. Maxi- 
mum values of the effective thermal conductivity 
were observed for the spherical and cylindrical 
geometries at radius ratios of about 0.3 and 0.15, 
respectively. A gross upward shift of the Row field 
has been observed with an associated distortion of 
the isotherms. Perturbation analyses have demo- 
nstrated the dependence of the convective transport 
of heat upon the radius ratio and the Rayleigh 
number. Finally, a correspondence to the instance 
wherein the cylindrical annular region is filled solely 
with a Newtonian fluid has been examined with 
some similarity observed at smaller values of the 
Rayleigh number. 
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numbers. Contrary to the Newtonian fluid results, 
the velocities are relatively high near the boundaries, 
resulting in much of the heat being convected away 

by the mass flowing adjacent to the boundary. The 
convection component of the Nusselt number is 
approximately proportional to the square of the 
modified Rayleigh number. 

6. 

7. 

8. 

9. 

IO. 

11. 

12. 

CoNCLUSlONS 13. 

Free convective heat transfer between concentric 
cylinders and spheres has been analytically exam- 
ined. The effects of the modified Rayleigh number, 
the’ radius ratio, and the external heat-transfer 
coefftcient have been quanti~tively anatyzed. 
Natural convection has been shown to exert a signi- 
ficant effect upon the total heat transfer for modified 

14. 

15. 

16. 
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CONVECTION NATURELLE DANS LES MILIEUX POREUX LIMITES PAR DES 
SPHERES CQNCENTRIQUES ET DES CYLINDRES HORIZONTAUX 

Resume-On presente les resultats dune etude analytique de la convection naturelie dans des milieux 
poreux compl~tement enfermis entre des spheres concentriques et des cylindres horizontaux. Le probleme 
permanent et bidimensionnel est resolu par la methode des differences finies et la mithode des 
perturbations regulieres. On donne les variations du transfert thermique global en fonction du nombre de 
Rayleigh modifie, du coefficient de transfert externe adimensionnel et du rapport des rayons. Les risultats 
montrent qu’un maximum du transfert thermique se produit pour les geometries sphbriques et 
cylindriques et depend seulement du rapport des rayons. Les champs des vitesses sont compares pour les 
deux geometries. Une configuration interessante concerne une region froide relativement stagnante et 
stable a la base du volume si la surface interne est chauffte, ce qui diplace le centre de la circulation 
principale par rapport a l’horizontale. De plus on analyse une analogie entre la nature de la convection 
naturelle lorsque la cavite est emplie d’un milieu poreux ou d’un fluide newtonien seul. Des formules 

algebriques sont etablies pour leur utilisation dans des applications pratiques. 

NATURLICHE KONVEKTION IN PORdSEN MEDIEN, BEGRENZT VON 
KONZENTRISCHEN KUGEL- UND HORIZONTALEN ZYLINDERFLACHEN 

Z~ammenfa~ung-Die vorliegende Arbeit berichtet iiber die Ergebnisse von analytischen Un- 
tersuchungen der nat~rlichen Konvcktion in porosen Medien. die vollst~ndig von konzentrischen Kugel- 
und horizontalen Zylinderthichen begrenzt sind. Das stationare, zweidimensionale Problem wurde mit 
der Methode der finiten Differenzen und dem regularen Stijrungsansatz gel&t. Es wurden die 
Anderungen des Warmedurchgangs mit der modifizierten Rayleigh---Zahl, mit dem dimensionslosen PUB 
eren Warmeiibergangskoeffizienten und mit dem Radienverhlltnis abgeschltzt. Die Ergebnisse zeigen, 
da0 ein Hiichstwert der Warmeiibertragung fur die kugelfijrmigen und zylindrischen Geometrien auftritt, 
der allein von dem Radienverhaltnis fur jede Geometrie abhangt. Das Stromungsfeld wurde untersucht 
und bei beiden Geometrien verglichen. Eine interessante Besonderheit ist das Auftreten einer relativ 
tragen und stabilen kalten Zone unten an der Ummantelung, wenn die innere umgebende F&he beheizt 
wird. Dadurch wird das Zentrum der Hauptzirkulation aus der Horizontalen verschoben. Dariiberhinaus 
wird eine mogliche qualitative Analogie zwischen den Arten der freien Konvektion fur die FalIe 
untersucht, daR die Ummantelung einerseits mit einem porosen Medium und andererseits nur mit einem 
Newton’schen Fluid ausgefillt ist. AbschlieBend werden einige algebraische Beziehungen der Daten fur 

den praktischen Gebrauch angegeben. 

ECTECTBEHHAII KOHBEKHHII B I-IOPHCTbIX CPEAAX, QFPAHMYEHHbIX 
KQHUEHTPH~ECK~M~ C@EPAMM M rOP~3OHTA~bHbIM~ ~~~~H~PAM~ 

AHAOTai@IR - B cTaTbe npHBeAexb5 pe3ynbTaTbt aHamiTiiYecxor0 8iccne~oBiimis ecTecrseeeoii KOH- 

BeKumi i9 nopHcTblx cpenax, 3aKnioYeHmx MeKAy KoweHTpsiYecmhfsi c+epaMm ss ropn30HTanbHbmi~ 

ummApam. CTauwoHapHaR nByxh4epHan 3aAaYa pemanacb MeTonoh4 KoHeYH61x pa3HocTeii li 

MeTOAOM PeQ’nSIpHbIX B03MyUleHHfi. npOBeAeHa OWHKa BJlHKHHIl Ha CyMMapHblfi KOJ@@UHeHT 

nepemca H3MeHeHWfi MO~H@iLVi~BaHHO~O YHCna Penerr, 6e3pa3Mepnoro 3HaYeHHII BHeLuHerO KO3+t$H- 
utiema nepemca Tenna LI oTnou3eHm ~MH~~COB. nOKa3aH0, 4~0 hiaKcaManbH0e 3Havewie Tennor5oro 
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ITOTOKK MK C&XiYCCKHX W UHJIHHnpH'ieCKHX KOH@W)‘PWifi 3aBHCHT HCKnhYlWTenbHO OT OTHOUIeHHIl 

pan&iyCO~. npoBeJJeH0 QaBHeHHe nOnei? Te'ieHHR Qnn o6eex re0MeTpHi-i. OTMe'IeH HHTePeCHbIfi @aKT 

HaJISiYHIl OTHOCHTenbHO 3aTOpMOZKeHHOfi H yCTOk4HBOii XOnOWOii O6naCTEi B HH%Heii '4aCTW 3aMKHy- 

TOrO O6&4allpH IIOIIBOIIC Tenna K BHyTpHHefi 0~HHWiBalOIUei-l IlOBepXHOCTH, 'IT0 CMeLUaeT UeHTp 

HatiOJEe IiHTeHCHBHOfi U~pKyJMWiH C rOpH30HTanbHOrO IlOnOlKeHHK. KpoMe TOTO, PaCCMOTPeHa 

803MoxHaK KawcTBemraK aHanorHK Mewy npoueccaiw CBO6OuHOii KoHneKuwi np5i 3anonHeHmi 

o6tiua nOpHCTOir CPeLIOii HllH IiCKnlO'lHTenbHO OnHO HblOTOHOBCKOfi XCWJKOCTLK). HaKOHeU, rIpeLI- 

nOmeH pail 0606rueHHbrx 3aBtiCtiMOCTeii ma npaKTli'feCKHX PaC'iETOB. 


